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The LAPLAS Experiment 

 “Laboratory of Planetary Sciences” (LAPLAS) at GSI 

 HEDM, Metallic Hydrogen… 

 

 

 

 

 

 

 

 Rayleigh-Taylor instability during implosion? 
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Tahir et al., Phys. Rev. E 61, 1975 (2000). 



Rayleigh-Taylor instability 

 Unstable interfaces during the implosion 

 RTI in elastic-plastic solids (RTI-EPS, Piriz 2009) 
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Piriz et al., Phys. Rev. E 80, 046305 (2009) 



Irradiation asymmetries 

Piriz et al., Phys. Rev. E 80, 046305 (2009) 
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 Beam time profile  irradiation asymmetries. 

 Planar RTI-EPS in terms of l, x (Piriz 2009) 

 

 

 

 

 

 

  Which (l, x) are produced? 



Irradiation Fourier spectrum – 1D beam 

Bret et al., Phys. Rev. E 85, 036402 (2012) 
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Irradiation Fourier spectrum, 1D beam 

 Now, Fourier transform        :  

Fourier Transform of beam profile, Î(sW) 

… = 

“Dirac’s comb” = 

Bret et al., Phys. Rev. E 85, 036402 (2012) 

Harmonic amplitudes of irradiation, from Fourier Transform of beam time profile 



Example: 1D beam, parabolic time profile 
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Bret et al., Phys. Rev. E 85, 036402 (2012) 
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Irradiation Fourier spectrum, 2D beam 
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Bret et al., Phys. Rev. E 85, 036402 (2012) 

W 



Irradiation Fourier spectrum, 2D beam 

1D result Form factor Irradiation harmonic at distance R 
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Bret et al., Phys. Rev. E 85, 036402 (2012) 
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Stability analysis 

 “Stable if 1st harmonic is”, gives back Piriz 2009 
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Bret et al., Phys. Rev. E 85, 036402 (2012) Piriz et al., Phys. Rev. E 80, 046305 (2009) 
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Cancelling the 1st harmonic 

 What about the planar approximation? 

 Piriz 2009 RTI-EPS analysis is in planar geometry 

 We are on a circle, radius Rc 

 Planar OK, for l << Rc 

 Wavelength of nth harmonic = Rc/n 

 What about n = 1, or 2 or 3? 

 Harmonic amplitude  with n. 

 In general, n = 1 is the largest amplitude 

 Cancel the 1st harmonic? Possible 

 Smaller harmonics  Better symmetry 

 Better planar approximation. Only needed from l = Rc/2 



Cancelling the 1st harmonic 

 The 1st harmonic reads H1= 
 

 When oscillating, ∞ number of W’s cancel it. 

 Example: 1D parabolic time profile 
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Bret et al., Phys. Rev. E 85, 036402 (2012) 

“Magic” WT’s 
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With these WT’s, H1=0 



Conclusions 

 RTI in elastic-plastic solids is an issue for LAPLAS 

 Growth % on wavelength & amplitude (Piriz 2009) 

 Asymmetries excited by the beam time profile 

 1D beam: Harmonic amplitudes from the Fourier 

transform of the beam time profile 

 2D : Same, times a form factor ~ 1 for Rbeam<<Rdeposition 

 Problem: Planar RTI analysis dubious on circle for l = R, 

+ 1st harmonic too strong. 

 Cancel 1st harmonic.  Amplitude = oscillating integral. 

 Infinite numbers of  “magic” WT’s work. 

 Better symmetry + RTI analysis more reliable. 

 



Cancelling the 1st harmonic 
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